Complexity of interpretability logics **ILW**, **ILP** and **ILM** (work in progress)

Luka Mikec

University of Zagreb, University of Barcelona

Barcelona, 2019

Interpretability

- ▶ Let T_1 and T_2 be some first order theories.
- ▶ Roughly, an interpretation of T_2 in T_1 is a pair (f, U) where:
 - ► f maps relational symbols to formulas;
 - ► $f(A \rightarrow B) = f(A) \rightarrow f(B)$ etc.;
 - ► $f(\forall xF) = \forall x(U(x) \rightarrow f(F))$ etc.;
 - ▶ for all sentences $F \in \mathcal{L}(T_2)$:

$$T_2 \vdash F \Rightarrow T_1 \vdash f(F).$$

► $T_1 \triangleright T_2$: T_1 interprets T_2 .

Interpretability

In particular, interpretability between finite extensions of a given theory:

$$T + A \triangleright T + B$$

► Formalised interpretability: what properties of > can be proven in the base theory?

Interpretability logics

The language of interpretability logics is given by

$$A ::= p \mid \bot \mid A \rightarrow A \mid \Box A \mid A \triangleright A,$$

where *p* is a propositional variable.

- ▶ Let T be a formal theory, and $Int(\lceil A \rceil, \lceil B \rceil)$ a sentence formalizing $T + A \triangleright T + B$.
- Arithmetical interpretation * assigns sentences to modal formulas, such that:
 - ▶ p* is a sentence;
 - $(A \rightarrow B)^* = A^* \rightarrow B^* \text{ etc.};$
 - $\blacktriangleright (\Box A)^* = Pr_T(A^*);$
 - ► $(A \triangleright B)^* = Int_T(A^*, B^*).$

Interpretability logics

► Given a theory *T* (able to formalise interpretability),

$$A \in IL(T) :\Leftrightarrow \forall * T \vdash A^*.$$

► Interpretability logics of all "reasonable" theories contains the basic interpretability logic IL.

Basic interpretability logic IL

► Basic interpretability logic IL: propositionally valid formulas (in the new language);
K □(A → B) → (□A → □B):

K
$$\square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B);$$

Löb $\square(\square A \rightarrow A) \rightarrow \square A;$
J1 $\square(A \rightarrow B) \rightarrow A \triangleright B;$
J2 $(A \triangleright B) \land (B \triangleright C) \rightarrow A \triangleright C;$
J3 $(A \triangleright C) \land (B \triangleright C) \rightarrow A \lor B \triangleright C;$
J4 $A \triangleright B \rightarrow (\diamondsuit A \rightarrow \diamondsuit B);$
J5 $\diamondsuit A \triangleright A.$

▶ rules: modus ponens and necessitation $A/\Box A$.

(parentheses priority: \neg , \Box , \diamondsuit ; \land , \lor ; \Rightarrow ; \rightarrow , \leftrightarrow)

▶ $\Box A$ is **IL**-equivalent to $\neg A \rhd \bot$ (similarly for $\Diamond A$).

Some principles

$$\begin{aligned} \mathbf{ILP} &= \mathbf{IL} + A \triangleright B \rightarrow \Box (A \triangleright B) \\ \mathbf{ILM} &= \mathbf{IL} + A \triangleright B \rightarrow A \land \Box C \triangleright B \land \Box C \\ \mathbf{ILW} &= \mathbf{IL} + A \triangleright B \rightarrow A \triangleright (B \land \Box \neg A) \end{aligned}$$

- ► IL(T) = ILP iff T is finitely axiomatizable and sufficiently strong;
- ▶ IL(T) = ILM iff T proves full induction;
- ► $IL(T) \supseteq ILW$.

Models

- Semantics: extend the usual relational (Kripke) model.
- ▶ **IL**-frame (Veltman frame): $\mathcal{F} = \langle W, R, \{S_w : w \in W\} \rangle$, where:
 - 1. $W \neq \emptyset$;
 - 2. R^{-1} is well-founded (no $x_0Rx_1Rx_2R...$ chains);
 - 3. R is transitive;
 - 4. $S_w \subseteq R[w]^2$ is reflexive, transitive, contains $R \cap R[w]^2$ (wRuRv implies uS_wv);
- ▶ **IL**-model (Veltman model): $\mathcal{M} = \langle W, R, \{S_w : w \in W\}, V \rangle$, where:
 - 1. $\langle W, R, \{S_w : w \in W\} \rangle$ is an **IL**-frame;
 - 2. $V \subseteq W \times Prop$ (or $V : Prop \rightarrow \mathcal{P}(W)$).

Models

- ▶ Veltman model: $\mathcal{M} = \langle W, R, \{S_w : w \in W\}, V \rangle$.
- ▶ $w \Vdash p$ if and only if wVp, for $p \in Prop$.
- Logical connectives have classical semantics.
- ▶ Truth of a formula $F \triangleright G$ ("F interprets G") in a world $w \in \mathcal{M}$:

$$w \Vdash F \rhd G \ :\Leftrightarrow \ \forall x \in R[w]: \ x \Vdash F \Rightarrow \exists y \in S_w(x): \ y \Vdash G.$$

Modal soundness and completeness:

$$IL + F \Leftrightarrow \forall \mathcal{F} : \mathcal{F} \models F.$$

Extensions and frame conditions

$$\begin{array}{ll} ILP & IL + A \triangleright B \rightarrow \Box (A \triangleright B) \\ ILM & IL + A \triangleright B \rightarrow A \land \Box C \triangleright B \land \Box C \\ ILW & IL + A \triangleright B \rightarrow A \triangleright B \land \Box \neg A \end{array}$$

- ► These logics are complete w.r.t. certain classes of frames:
 - (P) $wRw'RuS_wv \Rightarrow uS_{w'}v$;
 - (M) $wRuS_wv \Rightarrow R[v] \subseteq R[u];$
 - (W) $S_w \circ R$ is converse well-founded for each w;
- ▶ ILW-frame is IL-frame that satisfies (W) etc.

Complexity

- ► IL conservatively extends GL ("provability logic"); GL is in PSPACE.
- ► Closed fragment of **IL** is PSPACE-hard (Bou, Joosten).
- ► FMP for **IL**: if $x \Vdash F$, then there is a finite \mathcal{M} and $x' \in \mathcal{M}$ s.t. $x' \Vdash F$.
- Standard approach: to check if ⊢ F, we can (soundness, completeness, FMP) check if there is a finite model of ¬F.
- So, to prove IL ∈ PSPACE, it suffices to construct a PSPACE algorithm that tests satisfiability.

Complexity (satisfiability)

- A natural approach would be to build the model one world at a time.
- ▶ If $A \triangleright B \notin w$, try modelling a *B*-critical world satisfying *A*.
- ▶ If $A \triangleright B \in w$, $A \in x$, try modelling B with the same criticality as x.
- A very naive implementation does not terminate.
- But similarly with less naive approaches that we tried.

Complexity of IL

- Let Γ be an adequate set for $A \in \mathcal{L}$: a set of subformulas closed under certain operations.
- ightharpoonup $|\Gamma|$ is polynomial in |A|.
- Our algorithm builds models piece-by-piece (nondeterministically or with backtracking), where each "piece" is a (small) set of worlds.
- ▶ We introduce functions named (1), (2) and (3).
- ► (1) only calls (2), which only calls (3), which only calls (1).

Function (1)

- ▶ (1) takes $\Delta \subseteq \Gamma$ and checks whether there is a rooted Veltman model of Δ ($W = \{w\} \cup R[w], w \Vdash \Delta$)
- ▶ The starting call will be with $\Delta = \{A\}$.
- ▶ (1) looks at all the maximal Boolean consistent $\Delta' \supseteq \Delta$, and returns a positive result if at least one extension is satisfiable.
- ▶ Lemma: (1) returns a positive result if and only if Δ is satisfiable.

Function (2)

▶ (2) takes a maximal Boolean consistent $\Delta \subseteq \Gamma$ and checks whether there is a rooted Veltman model of Δ .

$$\Delta^{+} := \{ A \rhd B \in \Gamma : A \rhd B \in \Delta \}$$
$$\Delta^{-} := \{ A \rhd B \in \Gamma : \neg (A \rhd B) \in \Delta \}$$

- ▶ (2) returns a positive answer if the sets $\{\neg(C \triangleright D)\} \cup \Delta^+$ are satisfiable for all $\neg(C \triangleright D) \in \Delta^-$.
- Lemma: (2) returns a positive result if and only if Δ is satisfiable. (Proof: by merging roots)

Function (3)

- ▶ (3) takes a Boolean consistent $\Delta \subseteq \Gamma$ consisting of one negated \triangleright -formula $\neg(C \triangleright D)$ and a set of positive \triangleright -formulas Δ^+ , and checks whether there is a model of Δ .
- ▶ We say that (N, P) is a $(\neg(C \triangleright D), \Delta)$ -pair if:
 - 1. $N, P \subseteq \Gamma$;
 - $2. \ D \in N;$
 - 3. ⊥ *∉ P*;
 - 4. $A \triangleright B \in \Delta^+ \Rightarrow A \in N \text{ or } B \in P$.
- ▶ (3) returns a positive answer if there is a $(\neg(C \triangleright D), \Delta)$ -pair (N, P) such that the following holds:
 - 1. $\{\neg A, A \rhd \bot \mid A \in N\} \cup \{C, C \rhd \bot\}$ is satisfiable;
 - 2. $\{\neg A, A \rhd \bot \mid A \in N\} \cup \{B, B \rhd \bot\}$ is satisfiable for all B in P.
- Lemma: (3) returns a positive result if and only if Δ is satisfiable. (Proof: by joining the models, adding a new root w, and extending S_w where needed – or even making it total).

Wrapping up (IL)

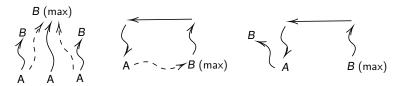
- ▶ Note that (1) can be calculated in terms of (2) etc.
- ► Each (1)-(2)-(3) chain adds a new $\Box \neg B$ formula for some $B \in \Gamma$; the procedure terminates.
- Algorithm works locally correct: each function does what it is supposed to do assuming the next one does. Full correctness by induction (starting with leaf nodes in the execution tree).
- ► IL was known to be PSPACE-hard (conservatively extends GL; also IL₀). Thus, IL is PSPACE-complete.

- ▶ Preventing $(R \circ S_w)$ -loops.
- ► Assume we have $\Diamond A$, $A \rhd \Diamond B \lor \Diamond C$ and $B \rhd A$. Our algorithm for **IL** might build:

▶ But not all S_w -loops are bad. Assume $\Diamond A$, $A \triangleright B$ and $B \triangleright A$.

▶ We also can't make S_w total as before.

- ▶ Solution: ensure each witness is $(S_w \circ R \circ S_w)$ -maximal.
- ▶ Lemma: in any cone witnessing $\neg(C \triangleright D)$ and $A_i \triangleright B_i$, we can S_w -connect A_i to $(S_w \circ R \circ S_w)$ -maximal witnesses of B_i .



► $(S_w \circ R \circ S_w)$ -maximality is lost in the process, but this can be fixed.

▶ Algorithm: iterate through $(S_w$ -) "visibility" graphs in advance.

- ► Existence of an arrow $A \rightarrow B$: the witness of A can S_w -see the witness of B;
- Non-existence: the witness of A can't S_w -see any B (Lemma ensures that this is wlog.)

- ▶ Visibility graphs are of polynomial size ($\sim |\Gamma|^2$).
- ► Reflexive and transitive, like *S_w*.
- ► Two kinds of information:
 - 1. if $A \longrightarrow B$, submodel generated by the witness of A should not entail (anything that triggers) B.
 - 2. if $A \longleftrightarrow B$: everything in cluster should forbid everything in cluster after an R-transition.

Previous example:

- ▶ We have a cluster $C = \{B_0, B_1, B_2\}$.
- ► Since $B_0 \longrightarrow B_3$, (the witness for) B_0 can't S_w -see anything that triggers B_3 .
- ▶ If B_i , $B_j \in C$ and $E \triangleright B_j$, (the witness for) B_0 can't S_w -see E.

ILP

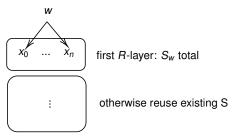
- ▶ Whenever $uS_w v$, also $uS_{w'} v$, for any w' between w and u.
- ▶ Assume we have a cone witnessing $\neg(C \triangleright D)$, $A_i \triangleright B_i$.
- ▶ Approach: when prepending w to worlds x_i witnessing $\neg(C \triangleright D)$, $A_i \triangleright B_i$,

$$\{A\rhd B:A\rhd B\in w\}\subseteq\bigcap\{A\rhd B:A\rhd B\in x_i\}$$

ILP

- ▶ Immediate successors of w should be S_w -connected.
- ▶ If $A \triangleright B \in w$, $wRx \Vdash A$ and x is not an immediate successor of w:

Let x_i be the immediate successor of w, a predecessor of x. Then $xS_{x_i}y \Vdash B$. Define xS_wy .



ILM

- ▶ Whenever $wRuS_wvRz$, ensure uRz. Essentially $u \subseteq_{\square} v$.
- ► For IL, ILW, and (in some sense) ILP, each piece of model required a polynomial (in fact linear) amount of worlds.
- ► Can this be done with **IL**M?

ILM

► Instead, here we can use the "naive" approach.



- Principle M is just strong enough to make this viable:
 - ▶ With $\neg(A \triangleright B) \in w'$, try obtaining A in a B-critical cone.
 - ▶ With $A \triangleright B \in w'Rw$ and $A \in w$, either reuse an available witness x (if any), or create a new world.
- ► At most $n = |\Gamma|$ boxed formulas. At most n calls resulting in reusable worlds. At most n level decreases. So, the maximal depth of a call tree is n^3 .

Thank you.

Implementations (to be updated):
https://github.com/luka-mikec/provability_sat

Previous work:

L. Mikec, F. Pakhomov, M. Vuković. Complexity of the interpretability logic **IL**. Logic Journal of the IGPL, 2018.

This work has been supported by the Croatian Science Foundation, grants UIP-05-2017-9219 and IP-01-2018-7459.