
Complexity of interpretability logics ILW, ILP and ILM
(work in progress)

Luka Mikec

University of Zagreb, University of Barcelona

Barcelona, 2019

Interpretability

I Let T1 and T2 be some first order theories.
I Roughly, an interpretation of T2 in T1 is a pair (f ,U) where:

I f maps relational symbols to formulas;
I f(A → B) = f(A)→ f(B) etc.;
I f(∀xF) = ∀x(U(x)→ f(F)) etc.;
I for all sentences F ∈ L(T2):

T2 ` F ⇒ T1 ` f(F).

I T1 B T2: T1 interprets T2.

Interpretability

I In particular, interpretability between finite extensions of a
given theory:

T + A B T + B

I Formalised interpretability: what properties of B can be
proven in the base theory?

Interpretability logics

I The language of interpretability logics is given by

A ::= p | ⊥ |A → A |�A |A B A ,

where p is a propositional variable.
I Let T be a formal theory, and Int(pAq, pBq) a sentence

formalizing T + A B T + B.
I Arithmetical interpretation ∗ assigns sentences to modal

formulas, such that:
I p∗ is a sentence;
I (A → B)∗ = A ∗ → B∗ etc.;
I (�A)∗ = PrT (A ∗);
I (A B B)∗ = IntT (A ∗,B∗).

Interpretability logics

I Given a theory T (able to formalise interpretability),

A ∈ IL(T) :⇔ ∀ ∗ T ` A∗.

I Interpretability logics of all “reasonable” theories contains the
basic interpretability logic IL.

Basic interpretability logic IL

I Basic interpretability logic IL:
propositionally valid formulas (in the new language);

K �(A → B)→ (�A → �B);
Löb �(�A → A)→ �A ;

J1 �(A → B)→ A B B;
J2 (A B B) ∧ (B B C)→ A B C;
J3 (A B C) ∧ (B B C)→ A ∨ B B C;
J4 A B B → (^A → ^B);
J5 ^A B A .
I rules: modus ponens and necessitation A/�A .

(parentheses priority: ¬,�,^; ∧,∨; B; →,↔)
I �A is IL-equivalent to ¬A B ⊥ (similarly for ^A).

Some principles

ILP = IL + A B B → �(A B B)

ILM = IL + A B B → A ∧ �C B B ∧ �C

ILW = IL + A B B → A B (B ∧ �¬A)

I IL(T) = ILP iff T is finitely axiomatizable and sufficiently
strong;

I IL(T) = ILM iff T proves full induction;
I IL(T)) ILW.

Models

I Semantics: extend the usual relational (Kripke) model.
I IL-frame (Veltman frame): F = 〈W ,R , {Sw : w ∈ W }〉,

where:
1. W , ∅;
2. R−1 is well-founded (no x0Rx1Rx2R . . . chains);
3. R is transitive;
4. Sw ⊆ R[w]2 is reflexive, transitive, contains R ∩ R[w]2 (wRuRv

implies uSwv);
I IL-model (Veltman model): M = 〈W ,R , {Sw : w ∈ W },V〉,

where:
1. 〈W ,R , {Sw : w ∈ W }〉 is an IL-frame;
2. V ⊆ W × Prop (or V : Prop → P(W)).

Models

I Veltman model: M = 〈W ,R , {Sw : w ∈ W },V〉.
I w
 p if and only if wVp, for p ∈ Prop.
I Logical connectives have classical semantics.
I Truth of a formula F B G (“F interprets G”) in a world w ∈ M:

w
 F B G :⇔ ∀x ∈ R[w] : x
 F ⇒ ∃y ∈ Sw(x) : y
 G.

I Modal soundness and completeness:

IL ` F ⇔ ∀F : F � F .

Extensions and frame conditions

ILP IL + A B B → �(A B B)
ILM IL + A B B → A ∧ �C B B ∧ �C
ILW IL + A B B → A B B ∧ �¬A
I These logics are complete w.r.t. certain classes of frames:

(P) wRw′RuSwv ⇒ uSw′v;
(M) wRuSwv ⇒ R[v] ⊆ R[u];
(W) Sw ◦ R is converse well-founded for each w;

I ILW-frame is IL-frame that satisfies (W) etc.

Complexity

I IL conservatively extends GL (“provability logic”); GL is in
PSPACE.

I Closed fragment of IL is PSPACE-hard (Bou, Joosten).
I FMP for IL: if x
 F , then there is a finiteM and x′ ∈ M s.t.

x′
 F .
I Standard approach: to check if ` F , we can (soundness,

completeness, FMP) check if there is a finite model of ¬F .
I So, to prove IL ∈ PSPACE, it suffices to construct a PSPACE

algorithm that tests satisfiability.

Complexity (satisfiability)

I A natural approach would be to build the model one world at a
time.

I If A B B < w, try modelling a B-critical world satisfying A .
I If A B B ∈ w,A ∈ x, try modelling B with the same criticality as

x.
I A very naive implementation does not terminate.
I But similarly with less naive approaches that we tried.

Complexity of IL

I Let Γ be an adequate set for A ∈ L: a set of subformulas
closed under certain operations.

I |Γ| is polynomial in |A |.
I Our algorithm builds models piece-by-piece

(nondeterministically or with backtracking),
where each “piece” is a (small) set of worlds.

I We introduce functions named (1), (2) and (3).
I (1) only calls (2), which only calls (3), which only calls (1).

Function (1)

I (1) takes ∆ ⊆ Γ and checks whether there is a rooted Veltman
model of ∆ (W = {w} ∪ R[w], w
 ∆)

I The starting call will be with ∆ = {A }.
I (1) looks at all the maximal Boolean consistent ∆′ ⊇ ∆, and

returns a positive result if at least one extension is satisfiable.
I Lemma: (1) returns a positive result if and only if ∆ is

satisfiable.

Function (2)

I (2) takes a maximal Boolean consistent ∆ ⊆ Γ and checks
whether there is a rooted Veltman model of ∆.

∆+ := {A B B ∈ Γ : A B B ∈ ∆}

∆− := {A B B ∈ Γ : ¬(A B B) ∈ ∆}

I (2) returns a positive answer if the sets {¬(C B D)} ∪∆+ are
satisfiable for all ¬(C B D) ∈ ∆−.

I Lemma: (2) returns a positive result if and only if ∆ is
satisfiable. (Proof: by merging roots)

Function (3)

I (3) takes a Boolean consistent ∆ ⊆ Γ consisting of one
negated B-formula ¬(C B D) and a set of positive B-formulas
∆+, and checks whether there is a model of ∆.

I We say that (N,P) is a (¬(C B D),∆)-pair if:
1. N,P ⊆ Γ;
2. D ∈ N;
3. ⊥ < P;
4. A B B ∈ ∆+ ⇒ A ∈ N or B ∈ P.

I (3) returns a positive answer if there is a (¬(C B D),∆)-pair
(N,P) such that the following holds:

1. {¬A ,A B ⊥ | A ∈ N} ∪ {C ,C B ⊥} is satisfiable;
2. {¬A ,A B ⊥ | A ∈ N} ∪ {B ,B B ⊥} is satisfiable for all B in P.

I Lemma: (3) returns a positive result if and only if ∆ is
satisfiable. (Proof: by joining the models, adding a new root
w, and extending Sw where needed – or even making it total).

Wrapping up (IL)

I Note that (1) can be calculated in terms of (2) etc.
I Each (1)-(2)-(3) chain adds a new �¬B formula for some

B ∈ Γ; the procedure terminates.
I Algorithm works locally correct: each function does what it is

supposed to do assuming the next one does. Full correctness
by induction (starting with leaf nodes in the execution tree).

I IL was known to be PSPACE-hard (conservatively extends GL;
also IL0). Thus, IL is PSPACE-complete.

ILW

I Preventing (R ◦ Sw)-loops.
I Assume we have ^A , A B^B ∨^C and B B A . Our algorithm

for IL might build:

A ^B

B

I But not all Sw -loops are bad. Assume ^A , A B B and B B A .

A B

I We also can’t make Sw total as before.

ILW

I Solution: ensure each witness is (Sw ◦ R ◦ Sw)-maximal.
I Lemma: in any cone witnessing ¬(C B D) and Ai B Bi , we can

Sw -connect Ai to (Sw ◦ R ◦ Sw)-maximal witnesses of Bi .

A

B

A

B

A

B (max)

A B (max) A B (max)

B

I (Sw ◦R ◦ Sw)-maximality is lost in the process, but this can be
fixed.

ILW

I Algorithm: iterate through (Sw -) “visibility” graphs in advance.
B0

B1

B2

B3

.
.

.

I Existence of an arrow A → B: the witness of A can Sw -see
the witness of B;

I Non-existence: the witness of A can’t Sw -see any B (Lemma
ensures that this is wlog.)

ILW

I Visibility graphs are of polynomial size (∼ |Γ|2).
I Reflexive and transitive, like Sw .
I Two kinds of information:

1. if A X−→ B, submodel generated by the witness of A should not
entail (anything that triggers) B.

2. if A ←→ B: everything in cluster should forbid everything in
cluster after an R-transition.

ILW

I Previous example:
B0

B1

B2

B3

.
.

.

I We have a cluster C = {B0,B1,B2}.
I Since B0 X−→ B3, (the witness for) B0 can’t Sw -see anything

that triggers B3.
I If Bi ,Bj ∈ C and E B Bj , (the witness for) B0 can’t Sw -see E.

ILP

I Whenever uSwv, also uSw′v, for any w′ between w and u.
I Assume we have a cone witnessing ¬(C B D), Ai B Bi .
I Approach: when prepending w to worlds xi witnessing
¬(C B D), Ai B Bi ,

{A B B : A B B ∈ w} ⊆
⋂
{A B B : A B B ∈ xi}

ILP

I Immediate successors of w should be Sw -connected.
I If A B B ∈ w, wRx
 A and x is not an immediate successor

of w:
Let xi be the immediate successor of w, a predecessor of x.
Then xSxi y
 B. Define xSwy.

w

x0 xn... first R-layer: Sw total

... otherwise reuse existing S

ILM

I Whenever wRuSwvRz, ensure uRz. Essentially u ⊆� v.
I For IL, ILW, and (in some sense) ILP, each piece of model

required a polynomial (in fact linear) amount of worlds.
I Can this be done with ILM?

ILM

I Instead, here we can use the “naive” approach.

w

True A B B formulas &
information on criticality

x0 xn...
witnesses of negated
A B B formulas

For true A B B in some w′, w′Rw,
and A ∈ w, witness x of B, w′Rx

...

...

...

I Principle M is just strong enough to make this viable:
I With ¬(A B B) ∈ w′, try obtaining A in a B-critical cone.
I With A B B ∈ w′Rw and A ∈ w, either reuse an available

witness x (if any), or create a new world.

I At most n = |Γ| boxed formulas. At most n calls resulting in
reusable worlds. At most n level decreases. So, the maximal
depth of a call tree is n3.

Thank you.

Implementations (to be updated):
https://github.com/luka-mikec/provability_sat

Previous work:

L. Mikec, F. Pakhomov, M. Vuković. Complexity of the
interpretability logic IL. Logic Journal of the IGPL, 2018.

This work has been supported by the Croatian Science Foundation, grants

UIP-05-2017-9219 and IP-01-2018-7459.

https://github.com/luka-mikec/provability_sat

	Introduction
	Appendix
	Appendix
	Articles

